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1. Introduction

Recently, two of the present authors together with S. Hirano proposed a family of time

dependent black hole solutions in 3 and 5 spatial dimensions that can be embedded into type

IIB string theory [1]. In this paper we further interpret these solutions using the AdS/CFT

correspondence [2 – 4], which relates the properties of the gravitational system to those of a

field theory in one lower dimension. In the field theory we will demonstrate that the process

we study corresponds to thermal equilibration. The black hole solution corresponds to a

thermal bath in the field theory. On top of this thermal background initially the Lagrange

density, which for a Maxwell field would be proportional to ~E2 − ~B2, has a non-trivial

expectation value. While the energy density ~E2 + ~B2 is a conserved quantity, the Lagrange

density is not and one would expect the system to thermalize, eventually partitioning the

energy equally between electric and magnetic fields. On general grounds this return to

equilibrium should be exponential with a characteristic thermalization time τtherm.. Since

the process is dissipative, the entropy should increase during thermalization. All these

expectations are born out by explicit calculations.

Studying thermalization in any strongly coupled system is inherently difficult. The

quark gluon liquid produced at RHIC, where the observed very short thermalization time

clashes with weak coupling expectation, is an example where this issue is of practical in-

terest. The AdS/CFT correspondence is a nice tool to analytically study certain solvable

strongly coupled field theories and will hopefully serve to build our intuition about thermal-

ization in strongly coupled systems. Earlier studies of thermalization using the AdS/CFT

correspondence were either limited to small fluctuations around a thermal configuration,

see e.g. [5 – 7], or approximate late time solutions [8]. In contrast, our gravity solution is an

exact answer for all times with a large initial perturbation. The particular field theory we
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study, N = 4 super-Yang-Mills on a compact hyperbolic space at a fixed temperature, is

too remote from the QCD fireball at RHIC to be of direct experimental relevance, but we

find it remarkable that in this simple system the full thermalization process can be mapped

out using the AdS/CFT correspondence. The thermalization time we find, τtherm. = 1
2πT ,

has appeared before in other studies [5, 9, 10] where it played the role of a limiting value.

For T = 300 MeV, this would give τtherm. ∼ 0.1 fm/c. Reassuringly this is much faster

than one would expect from a perturbative analysis.

Beyond the interest in studying thermalization our result is of notice in that it does

not exhibit any sign of a Poincaré recurrence. This result demonstrates a clash between

unitarity and the strict large number of color limit in the field theory. Such a clash is not

unexpected, see [11, 12] for recent discussions.

In the following section we will review the time dependent black hole solution of [1]. In

section 3 we calculate the properties of the dual field theory using the standard AdS/CFT

dictionary. In section 4 we use the formalism of thermofield theory to construct a particular

entangled state that encodes the exact density matrix of the dual field theory. In section 5

we use this thermofield state to calculate the expectation values of the Lagrangian and the

Hamiltonian to leading order in the deformation parameter from the field theory side and

establish agreement with the gravity calculation. In section 6 we discuss the implications

our result has for the question of unitarity of the dual field theory.

2. Time dependent black holes

We begin with a scalar Einstein gravity described by

I =
1

16πG

∫

ddx
√

g
(

R − gab∂aφ∂bφ + (d − 1)(d − 2)
)

, (2.1)

where the spacetime dimension d is greater than or equals to three. As shown in refs. [1, 13],

any solution of the above can be embedded into the type IIB supergravity for d = 3 and

d = 5. The d = 3 (d = 5) solution describes the deformation of AdS3 × S3 (AdS5 × S5)

geometry. Note that in three dimensions, φ is the IIB dilaton whereas
√

2φ corresponds

to the dilaton for d = 5. We shall denote the dilaton field by φ̃ including this extra

normalization factor. The AdS radius is denoted by l, which we set to be unity.

The black hole solution describing a non-equilibrium thermal system was obtained in

ref. [1] using the method of so called Janus construction [13]. Its metric ansatz is taken as

ds2 = f(µ)(dµ2 + ds2
d−1) (2.2)

where (d − 1) dimensional metric ḡpq satisfies

R̄pq = −(d − 2)ḡpq . (2.3)

The Einstein equations are reduced to

f ′f ′ = 4f3 − 4f2 +
4γ2

(d − 1)(d − 2)
f4−d , (2.4)
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and the scalar equation is integrated once giving

φ′(µ) =
γ

f
d−2
2 (µ)

, (2.5)

where γ is the integration constant responsible for the Janus deformation. For γ2 ≤ γ2
c

with

γ2
c = (d − 2)

(

d − 2

d − 1

)d−2

, (2.6)

this can be solved by the integral [1]

µ0 ± µ =

∫ ∞

f

dx

2
√

x3 − x2 + γ2

(d−1)(d−2)x
4−d

, (2.7)

where µ0 is chosen such that µ = 0 at the turning point. One may show that µ0 ≥ π/2.

Defining φ± by

φ± = φ(±µ0) , (2.8)

one finds that

φ+ − φ− =

∫ µ0

−µ0

dµ
γ

f
d−2
2 (µ)

. (2.9)

Now the trick is to take the metric ḡpq as the cosmological form,

ds2
d−1 = −dτ2 + cos2 τds2

Σ (2.10)

where ds2
Σ is describing the compact, smooth, finite volume Einstein space metric in (d−2)

dimensions satisfying RΣ
kl = −(d− 3)gΣ

kl. The coordinate τ is ranged over [−π/2, π/2]. For

d = 3 case, the Σ space corresponds to a circle S1 and, for higher dimensions, the space

can be given by the quotient of the hyperbolic space Hd−2 by a discrete subgroup of the

hyperbolic symmetry group, SO(1, d − 2).

In summary the metric for the time dependent black hole is given by

ds2 = f(µ)(dµ2 − dτ2 + cos2 τds2
Σ) . (2.11)

The above form of the metric is suitable for the drawing of the Penrose diagram. The τ

and µ coordinate can be used to represent the global structure of the spacetime. Since

µ0 ≥ π/2, the diagram is no longer a square but a rectangle elongated in the horizontal

direction. The ±45◦ lines describe the future and past horizons.

For instance, the future horizon extended from the future infinity on the right hand

side corresponds to a line µ − µ0 = τ − π/2. Representing the volume of Σ space by VΣ,

the future-horizon area is given by

A(τ) = VΣ

[

cos(τ)f
1
2 (µ0 + τ − π/2)

]d−2
. (2.12)

One can check that the area is monotonically increasing as a function of τ starting from

zero at τ = −π/2 reaching the maximal value VΣ at τ = π/2. This is consistent with the

area theorem of the black hole horizon.
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µ=−µ 0 µ= µ 0µ = 0

Figure 1: Penrose diagram for the time dependent black hole. The τ (∈ [−π/2, π/2]) coordinate

runs vertically upward and µ (∈ [−µ0, µ0]) to the right horizontally.

To understand the geometry a little better it is instructive to look at the undeformed

case. If the deformation parameter γ is zero, the scalar field becomes a trivial constant

and the metric

ds2
0 =

1

cos2 µ
(dµ2 − dτ2 + cos2 τds2

Σ) (2.13)

describes the static black hole. The Penrose diagram for this case becomes a square and

the physics of corresponding black hole is studied in refs. [14 – 22]. Locally this space is

just Anti-de Sitter space. The only difference to global AdS is that we had to perform an

orbifold of the hyperbolic space Hd−2 to obtain the compact manifold Σ.

By the coordinate transformation,

tanh t =
sin τ

sin µ
, r =

cos τ

cos µ
, (2.14)

the metric of the undeformed black hole may be brought to the form of the BTZ type [23],

ds2
eq = −(r2 − 1)dt2 +

dr2

r2 − 1
+ r2ds2

Σ . (2.15)

The temperature of the black hole is Teq = 1
2π which is in the unit of the AdS radius.

The horizon is at r = 1 and the corresponding black hole entropy is

Seq =
VΣ

4G
. (2.16)

The mass of the black hole is evaluated as [20]

Meq =
VΣ

8πG

(

d − 2

d − 1

)(

d − 3

d − 1

)
d−3
2

. (2.17)

As explained in [21] the value T = 1
2π is also special in the dual field theory on a hyperbolic

space, since this particular thermal state can be formally obtained from the vacuum of the

Einstein universe. At other values of the temperature the dual black hole is no longer locally
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AdS, but instead is given by a k = −1 Schwarzschild black hole with a non-trivial mass

parameter, which for the k = −1 slicing formally is negative for temperatures less than the

special T = 1
2π . To find time dependent solutions for any temperature other than T = 1

2π

one has to turn on an explicit time dependence in the dilaton, φ(µ, τ), and the metric

function f(µ, τ). While such a solution can at least be obtained for small deformation

parameter γ or small temperature difference T = 1
2π + δT by perturbing around the known

solutions, we will limit our analysis in this paper to the fully solvable case of T = 1
2π .

Since the effect of our time dependent deformation vanishes at late times, these ther-

modynamic properties of the undeformed case will describe the deformed solution at late

times when the system returns to equilibrium. The time dependent solution describes non-

equilibrium physics and we have to carefully determine the energy density and the entropy

independently and cannot rely on the first law of thermodynamics to relate them. At least

the energy density can be reliably defined even in the time dependent context using the

holographic stress-energy tensor, and we will determine it in the next section where we

discuss the gauge/gravity correspondence.

3. Correspondence

In this section we like to discuss the physics of the super Yang-Mills (SYM) theory dual to

the time dependent black hole. Since we are dealing with the deformation of the AdS/CFT

correspondence, we shall use the standard framework given in [3, 4] for the interpretation

of the geometry of the time dependent black hole. Namely the on-shell supergravity action

with given boundary sources is providing the standard generating functional of connected

correlators of operators dual to the sources. In this framework, the classical geometry and

the bulk spacetime have a natural dual Yang-Mills theory interpretation in the planar large

Nc limit.

First by choosing the conformal factor h2 = cos2 τ/f(µ), the boundary metric for the

CFT is given by [1]

ds2
B = −dt2 + ds2

Σ . (3.1)

There are two separated boundaries at µ = ±µ0 and the boundary time t (∈ (−∞,∞))is

related to τ by tanh t = ± sin τ respectively at each boundary.

For d = 5 case, the N = 4 SYM theory on the above boundary spacetime is the

corresponding dual system. Since the values of the dilaton on the two boundaries are

different from each other, the corresponding CFT’s of the two boundaries now become

different as a result of the deformation. The number of colors Nc agrees with each other

while the ’t Hooft couplings λ± become different by the time dependent deformation.1

The situation in the d = 3 case is not much different. The CFT Lagrangian density is

proportional to the inverse of the string coupling by

L± ∝ (g±s )−1 = e−φ̃± . (3.2)

1The ’t Hooft coupling λ is related to the string coupling and the number of color by λ = 4πgsNc.
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The scalar field behaves, in the near boundary region, as

φ ∼ φ± ∓ γ

d − 1
|µ ∓ µ0|d−1 + · · · . (3.3)

We shall be discussing the behavior of the CFT from the view point of the right hand side

boundary at which the upper sign in the above is relevant. The system on the left hand

side can be treated in a similar manner. Noting that

h ∼ |µ − µ0|/| cos τ | = |µ − µ0| cosh t (3.4)

near boundary region of the right hand side, the near boundary behavior of the scalar can

be presented as

φ ∼ φ+ − γ

(d − 1) coshd−1 t
hd−1 + · · · . (3.5)

Since the operator dual to the dilaton is the CFT Lagrange density, one is led to

〈L〉 =
γ̃

8πG

1

coshd−1 t
, (3.6)

where γ̃ equals to
√

2γ for d = 5 and to γ in d = 3 as long as we use the standard definitions

of the field theory Lagrangians. For other dimensions no string theory embedding of the

Janus geometries and no dual field theory have been proposed so far, so we will assume

that in all those cases the Lagrange density of the dual field theory is scaled in such a way

that γ̃ = γ.

By studying the near boundary behavior of the metric tensor, one can obtain the

expectation value of the boundary energy momentum tensor. We follow the holographic

renormalization methods in ref. [24] and the result is

〈T00〉 =
1

8πG

(

d − 2

d − 1

)(

d − 3

d − 1

)
d−3
2

〈Tij〉 =
1

8πG

(

1

d − 1

)(

d − 3

d − 1

)
d−3
2

hij , (3.7)

where hij is the metric tensor for the Σ space. The total energy of the system E agrees

with the equilibrium value Meq. The result is consistent with the tracelessness condition

of the energy momentum tensor, i.e. T µ
µ = 0, which is due to the conformal symmetry.

There is one important clarification about the above computation. When we calculate

the operator expectation values or more generally correlators using the on-shell gravity

action, we are not using the Lorentzian geometries. If we were working in the Lorentzian

signature, we would be troubled with the singularities in solving the gravity equations.

Instead one computes correlators using Euclidean geometries. As will be shown in the next

section, the Euclidean black hole geometry is perfectly smooth and regular everywhere.

There is no notion of horizon there. Hence the gravity equation with specified boundary

sources is well defined and gives a unique solution. Then using the corresponding on-shell

action, one can compute the Euclidean correlators of the boundary CFT operators. One
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then gets the Lorentzian-signature correlators by the Wick rotation (in the boundary CFT)

or by an appropriate analytic continuation (on the geometric side).

From the above behavior of the expectation values, it is clear that we are dealing

with a quantum system whose state is not stationary. The system is homogeneous over

the finite-volume Σ space, which explains the time independence of the boundary energy

momentum tensor. As the black hole possesses the Z2 time reversal symmetry τ → −τ , the

same is true for the boundary system, which is symmetric under the time reversal t → −t,

too.

The system starts at t = 0 from an out-of-equilibrium state where the kinetic energy

differs from the potential energy. Then this out-of-equilibrium situation settles down as

time goes by reaching exponentially the equilibrium state where the kinetic energy equals

to the potential energy. The exponential approach of the equilibrium can be seen clearly

from the late time behavior of the expectation value of the Lagrange density. Recalling

that we work at a temperature of 1
2π in units where the curvature radius of the hyperbolic

space is 1, the thermalization time can be written as τtherm. = 1
2πT . The final entropy of

the system is given by S = Seq, which should be larger than the initial entropy S0 at t = 0.

A few comments are in order. Since we are dealing with a thermal equilibration process,

the first law does not have to hold. Namely TdS 6= dE + pdV . Since the total energy and

volume of the system are constant in time, the right hand side is zero whereas the left hand

side (if defined) cannot be vanishing because of the change of the entropy. This is not a

problem since the system is not in a quasi-equilibrium state. Even the second law is not

working since the system has the Z2 symmetry and, the entropy should be decreasing as

a function of time for t < 0 reaching the minimal value at t = 0. However for the finite

entropy system this kind of fine tuning at t = −∞ is not totally impossible.

From the geometry we have already computed the horizon area as a function of τ

which is related to the boundary time by tanh t = sin τ . Along the future horizon on the

right hand side, the horizon area is monotonically increasing as we discussed before. But

for the time dependent case, we do not have a formalism to relate the horizon area to

the entropy or some other quantity of the boundary CFT. Similarly the temperature as a

function of time cannot be computed from the geometry because there is no notion of the

periodicity of the Euclidean thermal circle for the time dependent case. Since the system is

not in a thermal equilibrium, we do not know how to define the temperature of the system

either.

Finally let us describe one failure of the geometric description. The late time behavior

of the expectation value of the Lagrange density computed from geometry appears ex-

tremely natural from the physics view point of the thermal equilibration. However this

behavior is not consistent with the quantum Poincaré recurrence theorem [25 – 28]. The

theorem states that for any quantum system the wave function or expectation values of

operators of the system will continuously return arbitrarily closely to their initial values in

a finite amount of time once the spectrum is discrete. Since the boundary quantum sys-

tem indeed has the discrete spectrum, one can see that there is a failure in the geometric

description once we accept the AdS/CFT correspondence.

As discussed ref. [11], this failure of the geometrical description is of order e−aSeq with
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some order-one constant a. The discrepancy then becomes relevant around t ∼ aSeql.

Since Seq ∝ N2
c = λ2/(4πgs)

2 for d = 5, one can see that the effect is nonperturbative in

its nature.

Finally as discussed in refs. [29, 22], the d = 5 geometry shows a nonperturbative

instability corresponding to D3−D3 pair creation. The same instabilities are present in the

N = 4 SYM theory on the Σ space which is negatively curved. Hence the correspondence

is still working in this respect. The instabilities can be suppressed by taking the volume

VΣ large or the string coupling gs small. Since we are in the decoupling large Nc limit with

λ fixed, the instabilities can be ignored and do not affect any discussions above.

4. Construction of the thermofield state

The time dependent black hole solution allows an analytic continuation, τ = −iτE , leading

to the Euclidean geometry,

ds2
E = f(µ)(dµ2 + dτ2

E + cosh2 τEds2
Σ) (4.1)

with the scalar field φ(µ) intact. τE is ranged over (−∞,∞). The Euclidean geometry

is smooth everywhere and has a boundary. The conformal shape of the (µ, τE) space

is a disk as the case of the usual time-independent black hole. In this section we shall

provide the physical interpretation of the above Euclidean geometry in terms of thermofield

dynamics [30 – 33].

For the 4d Poincarè-invariant field theories, their instanton solution possesses O(4)

invariance and let us take tE = 0 as the fixed point of the Z2 symmetry tE → −tE where

tE is the Euclidean time. At this point the time derivative of fields vanish again due to the

Z2 symmetry. This tE = 0 field configuration may be interpreted as an initial configuration

from which the Lorentzian dynamics follows. The subsequent Lorentzian dynamics for

t ≥ 0 can be obtained from the instanton solution by analytic continuation [34]. At

tE = t = 0, the Lorentzian and the Euclidean configurations agree with each other and the

time derivatives (velocities) of both fields vanish, which helps them join smoothly. Thus

at least semi-classically we conclude that the Euclidean solution provides an initial state

for the Lorentzian time evolution.

In case of geometry, this procedure corresponds to the Hartle-Hawking construction of

the wave function [35]. In our problem we shall follow the proposal of ref. [11] to construct

the corresponding thermofield initial state. Namely we patch the half of Euclidean geometry

sliced at τE = 0 to the upper half of the Lorentzian solution sliced at τ = 0. Since

the geometry involves two boundaries, the corresponding Hilbert space consists of H =

H+ ×H−. Unlike the conventional thermofield formalism, the two Hamiltonians H+ and

H− differ from each other, which is responsible for the time dependence of a single boundary

description as we will show below. According to the proposal in ref. [11], the Euclidean

geometry defines a boundary Hamiltonian and allows a Euclidean boundary time evolution,

which will determine the initial thermofield state by

|Ψ〉 =
1√
Z

∑

mn

〈E+
m|U |E−

n 〉 |E+
m〉 × |E−

n 〉 (4.2)
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A

B

Figure 2: The conformal diagram of the Euclidean solution in (µ, τE) space. The curves represent

constant µ lines. Along the curves, τE runs from −∞ at B to +∞ at A in the upward direction.

The right (left) half of boundary corresponds to µ = µ0 (µ = −µ0). The dotted line is the τE = 0

line and the lower half is used to construct the thermofield state.

where Z is the normalization factor. The Euclidean evolution operator U is given by

U = T exp

[

−
∫ s+

s−

ds H(s)

]

(4.3)

where s is the boundary Euclidean time with s± denoting the two boundary times at

τE = 0. Since the two boundary Hamiltonians differ from each other, H(s) becomes time

dependent. In this respect, the above is a small generalization of the Maldacena’s proposal

but this naturally follows from the fact that the Euclidean boundary Hamiltonian is now

time dependent.

The boundary of the metric (4.1) can be identified by the fact that the scale factor

f(µ) cosh2 τE is infinitely large on the boundary. The boundary is then µ = ±µ0 and

τE = ±∞. In (µ, τE) space, (µ,±∞) become two points on the boundary, which are

antipodal. At these points, the segments µ = ±µ0 are joined to form a complete circle.

The conformal shape of (µ, τE) space is depicted in figure 2.

In the previous section, we have introduced the boundary time t by tanh t = ± sin τ

respectively for µ = ±µ0. By the analytic continuation t = −itE , the Euclidean boundary

time tE is related to tan tE = ± sinh τE . For µ = µ0 (µ = −µ0), tE is chosen to run over

[π/2, 3π/2] ([−π/2, π/2]) from B (A) to A (B). In the lower half part of the Euclidean

geometry, the boundary time ranges over [0, π]. The boundary Hamiltonian is identified

as H± (that is obtained from L± of the previous section) respectively for µ = ±µ0. The

evolution operator U then becomes

U = e−
π
2
H+e−

π
2
H− = e−

βeq
4

H+e−
βeq
4

H− , (4.4)

where we have used βeq ≡ 1/Teq = 2π.

– 9 –
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Therefore the thermofield initial state becomes

|Ψ〉 =
1√
Z

∑

mn

〈E+
m|E−

n 〉e−
βeq
4

(E+
m+E−

n ) |E+
m〉 × |E−

n 〉 . (4.5)

The state becomes the usual one if H+ = H−.

Since two boundary CFT’s are independent, the generic time evolution involves two

boundary times t+ and t− with the Hamiltonians H+ and H− respectively. More explicitly,

|Ψ(t+, t−)〉 = e−i(t+H+×I+t−I×H−)|Ψ(0, 0)〉 . (4.6)

If H+ = H−, the thermofield initial state is invariant under H̃ = H+ × I − I × H−. But

for the present case with deformation, we do not have this symmetry any more and this

will be the reason for the time dependence of the thermal system.

The density matrix ρ+ for the boundary system on the right hand side is given by

ρ+ = tr−|Ψ〉〈Ψ| (4.7)

where tr± denotes the trace over the H± Hilbert space. If O+ is any operator defined in

the H+ space, the thermal expectation values are defined by

〈O+〉 = tr+ρ+O+ . (4.8)

This description of the system by the density matrix provides us with the single boundary

view.

The density matrix ρ+ is no longer commuting with H+ and, hence, time dependent.

Then the expectation value 〈O+〉 is in general time dependent, which is consistent with

our result of the previous section for O+ = L.

Note that the pure state expectation value, 〈Ψ|O+|Ψ〉, is also giving the expectation

operator 〈O+〉. Therefore we conclude that the above density matrix (or the thermofield

state) of the boundary CFT is corresponding to the geometry of the time dependent black

hole if one ignores the failure of the previous section that is nonperturbative.

5. Check for the thermofield state

In order to verify our proposal for the thermofield state we would like to compute the

expectation value of the Lagrangian and the Hamiltonian in the field theory and compare

with the supergravity answers in equations (3.6) and (3.7) to leading order in the deforma-

tion parameter γ. As in [1, 36] one can employ the techniques of conformal perturbation

theory to calculate field theory expectation values (suitably generalized to the non-trivial

thermofield state) in a power series in γ. The expectation value of the Lagrangian in (3.6)

is exactly linear to all orders in γ. The expectation value of the Hamiltonian that one gets

by integrating the energy density T00 in (3.7) is the exact answer as well. Independent of γ

one finds the equilibrium values, so that the leading correction to 〈H〉 is zero in the gravity

calculation.
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To compute the expectation values in the field theory we start from the thermofield

state (4.5). Note that in the following we specialize to the case d = 3. For the expectation

value of the Lagrange density 〈L+(t, 0)〉 we get

〈L+(t, 0)〉 =
1

Z
trL+(t, 0)e−

βeq
4

H+e−
βeq
2

H−e−
βeq
4

H+ (5.1)

where βeq = 2π in our case. Let H− − H+ = δH and we expand e−π(H++δH) by

e−π(H++δH) = e−πH+ −
∫ π

0
dτe−(π−τ)H+δHe−τH+ + · · · (5.2)

Then the leading term

trL+(t, 0)e−2πH+ (5.3)

is vanishing. The remaining contribution gives

〈L+(t, 0)〉 = −
∫ π

2

−π
2

dτ
1

Z
trL+(t, 0) δH(−i(τ − π))e−2πH+ + · · · (5.4)

This can be arranged as2

〈L+(t, 0)〉 = (eφ+/eφ− − 1)

∫ π
2

−π
2

dτ

∫ 2π

0
dθ〈L+(t, 0)L+(−i(τ − π), θ)〉γ=0 . (5.5)

Now let us use the formula

〈L+(t1, θ1)L+(t2, θ2)〉γ=0 =
1

16πG

4

π

1

4

∞
∑

m=∞

1

[cosh(t1 − t2) − cosh(θ1 − θ2 + 2πm) − iǫ]2

(5.6)

from equation (2.5) of ref. [11]. We have fixed the normalization by comparing to the

standard AdS/CFT result for the 2-point function for the operator O dual to a scalar with

kinetic term −η
2 (∂φ)2

〈O(x)O(0)〉 = η
2∆ − d

πd/2

Γ(∆)

Γ(∆ − d/2)

1

x2∆
=

1

16πG

4

π

1

x4
(5.7)

considering the limit t1 → t2 and θ1 → θ2. The factor 1/4 is introduced to cancel the

square of the coefficient 1/2 of cosh x − 1 = 1
2x2 + · · ·.

2In a Hamiltonian framework the propagator can be given a path integral definition 〈x′|e−τH′

|x〉 =
R x(τ)=x′

x(0)=x
Dxe−S′

E where S′
E is the Euclidean action S′

E = (1 + δ)SE = −(1 + δ)
R τ

0
dsL(−is) and SE is the

Euclidean action in the undeformed theory. Then

〈x′|e−τH′

|x〉 =

Z x(τ)=x′

x(0)=x

Dxe
−SE (1 + δ

Z τ

0

L(−is)) + · · · = 〈x′|e−τH |x〉+δ〈x′|e−τH

Z τ

0

dsL̂(−is)|x〉 + · · ·

where L̂(−is) = esH(K − V )e−sH with H = K + V . K is the kinetic energy operator while V is for the

potential operator. So the perturbation is really in terms of the Lagrange operator (K −V ) with imaginary

time evolution.

– 11 –
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Therefore one finally has

〈L+(t, 0)〉 =
1

16πG

2γ

π

∫ π
2

−π
2

dτ

∫ ∞

−∞
dθ

1

[cosh(t + iτ) + cosh θ]2
(5.8)

where we have used (eφ+/eφ− − 1) = 2γ + · · ·. To evaluate the integral, we first note that

∫ π
2

−π
2

dτ

a cos τ + ib sin τ + c
= 2

tan−1
(

c−a+ib√
c2−a2+b2

)

+ tan−1
(

c−a−ib√
c2−a2+b2

)

√
c2 − a2 + b2

= 2
tan−1

(√
c2−a2+b2

a

)

√
c2 − a2 + b2

(5.9)

where, for the last equality, we use tan(A + B) = (tan A + tan B)/(1− tan A tan B). Then

∫ ∞

−∞
dθ

∫ π
2

−π
2

dτ
1

[cosh(t + iτ) + cosh θ]2
= 4

∫ ∞

0
dθ

( −d

sinh θdθ

)

tan−1
(

sinh θ
cosh t

)

sinh θ

=
−4

cosh2 t

∫ ∞

0

dw

w
(tan−1 w/w)′ . (5.10)

The definite integral is evaluated as

−2

∫ ∞

0

dw

w

(

tan−1 w

w

)′
=

w + (w2 − 1) tan−1 w

w2

∣

∣

∣

∣

∞

0

= π/2 . (5.11)

Hence we get

〈L+(t, 0)〉 =
1

8πG

γ

cosh2 t
, (5.12)

in complete agreement with the gravity result in (3.6).

In an analogous fashion we can calculate the order γ correction to the expectation

value of the the boundary energy momentum tensor 〈Tµν〉. The calculation proceeds as

above, however this time the relevant 2-point function is 〈TµνL〉 which vanishes (and hence

the correction vanishes, too). This is in agreement with the supergravity result (3.7) which

states that to all orders in γ the expectation value of Tµν is given by the equilibrium answer,

so in particular the order γ correction vanishes.

6. Discussion

In this paper we have investigated a time dependent black hole solution utilizing the

AdS/CFT correspondence. We have found an exact solution of the supergravity in the

large Nc and large AdS curvature radius limit, which corresponds to a large initial pertur-

bation of the black hole geometry and have observed an exponential return to equilibrium.

We constructed the thermofield state from the Hartle-Hawking wavefunction and

showed the agreement on both sides of the duality for the time dependent expectation

value of the Lagrangian density to lowest order in conformal perturbation theory. Hence

the time dependent black holes spacetimes, we have discussed, yield an interesting labora-

tory to study equilibration of strongly coupled gauge theories. A more detailed study of
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these spacetimes, including the five dimensional case, the calculation of higher point corre-

lation functions and higher orders in conformal perturbation theory would be interesting.

Unfortunately, the nature of the Janus ansatz implies that the gauge theories are defined

on compact spaces of negative curvature, which is not the case one is most interested in

for “real world” applications.

In ref. [11] it was found that a small perturbation around the eternal black hole leads

to exponentially decaying correlation functions, which are inconsistent with the quantum

Poincaré recurrence theorem and hence with unitarity. The operator expectation values

we computed from the on-shell supergravity action are once more inconsistent with the

quantum Poincaré recurrence theorem. As in ref. [11] this failure of the correspondence

in the large time limit can be shown to occur as a nonperturbative effect. Therefore this

failure is not a contradiction at all. In the strict planar limit where the evaluation in the

dual supergravity theory in terms of the classical on-shell action is valid the unitarity of the

field theory is not manifest. It only gets reinstated by considering exponentially suppressed

corrections.
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